Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Interactions between species are widely understood to have promoted the diversification of life on Earth, but how interactions spur the formation of new species remains unclear. Interacting species often become locally adapted to each other, but they may also be subject to shared dispersal limitations and environmental conditions. Moreover, theory predicts that different kinds of interactions have different effects on diversification. To better understand how species interactions promote diversification, we compiled population genetic studies of host plants and intimately associated herbivores, parasites, and mutualists. We used Bayesian multiple regressions and the BEDASSLE modeling framework to test whether host and associate population structures were correlated over and above the potentially confounding effects of geography and shared environmental variation. We found that associates' population structure often paralleled their hosts' population structure, and that this effect is robust to accounting for geographic distance and climate. Associate genetic structure was significantly explained by plant genetic structure somewhat more often in antagonistic interactions than in mutualistic ones. This aligns with a key prediction of coevolutionary theory that antagonistic interactions promote diversity through local adaptation of antagonists to hosts, while mutualistic interactions more often promote diversity via the effect of hosts' geographic distribution on mutualists' dispersal.more » « less
-
IntroductionForecasting range shifts in response to climate change requires accurate species distribution models (SDMs), particularly at the margins of species' ranges. However, most studies producing SDMs rely on sparse species occurrence datasets from herbarium records and public databases, along with random pseudoabsences. While environmental covariates used to fit SDMS are increasingly precise due to satellite data, the availability of species occurrence records is still a large source of bias in model predictions. We developed distribution models for hybridizing sister species of western and eastern Joshua trees (Yucca brevifoliaandY. jaegeriana, respectively), iconic Mojave Desert species that are threatened by climate change and habitat loss. MethodsWe conducted an intensive visual grid search of online satellite imagery for 672,043 0.25 km2grid cells to identify the two species' presences and absences on the landscape with exceptional resolution, and field validated 29,050 cells in 15,001 km of driving. We used the resulting presence/absence data to train SDMs for each Joshua tree species, revealing the contemporary environmental gradients (during the past 40 years) with greatest influence on the current distribution of adult trees. ResultsWhile the environments occupied byY. brevifoliaandY. jaegerianawere similar in total aridity, they differed with respect to seasonal precipitation and temperature ranges, suggesting the two species may have differing responses to climate change. Moreover, the species showed differing potential to occupy each other's geographic ranges: modeled potential habitat forY. jaegerianaextends throughout the range ofY. brevifolia, while potential habitat forY. brevifoliais not well represented within the range ofY. jaegeriana. DiscussionBy reproducing the current range of the Joshua trees with high fidelity, our dataset can serve as a baseline for future research, monitoring, and management of this species, including an increased understanding of dynamics at the trailing and leading margins of the species' ranges and potential for climate refugia.more » « less
-
Moccia, Marcello (Ed.)Nondisclosure of lesbian, gay, bisexual, transgender, asexual, or otherwise queer (LGBTQA) identities in the workplace is both common and stressful to those who do not disclose. However, we lack direct evidence that nondisclosure of LGBTQA identity affects worker productivity. In two surveys of LGBTQA-identified scientists, we found that those who did not disclose LGBTQA identities in professional settings authored fewer peer-reviewed publications—a concrete productivity cost. In the second survey, which included straight and cisgender participants as a comparison group, we found that LGBTQA participants who disclosed their sexual orientation had publication counts more like non-LGBTQA participants than those who did not disclose, and that all three groups had similar time since first publication given their academic career stage. These results are most consistent with a productivity cost to nondisclosure of LGBTQA identity in professional settings, and suggest a concrete need to improve scientific workplace climates for sexual and gender minorities.more » « less
An official website of the United States government
