Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Coevolution has come to be widely understood as specific, simultaneous, reciprocal adaptation by pairs of interacting species. This strict-sense definition arose from a desire for conceptual clarity, but it has never reflected the much wider diversity of ways in which interacting species may shape each other’s evolution. As a result, much of the literature on the evolutionary consequences of species interactions pays homage to the strict-sense definition while addressing some other form of coevolution. This tension suggests we should re-frame the key question in coevolution research, from “when is it coevolution?” to, rather, “how is it coevolution?”. The result is not so much a definition of coevolution as a mission statement: We can describe how species coevolve by documenting the ways that each species shaped the other’s genetic diversity over a shared history of interaction. Making this change shifts our focus from identifying case studies for a single, narrowly defined process to describing the many ways — specific and diffuse, simultaneous and stepwise, adaptive and non-adaptive — in which species evolve together.more » « less
-
Abstract Quantifying how global change impacts wild populations remains challenging, especially for species poorly represented by systematic datasets. Here, we infer climate change effects on masting by Joshua trees (Yucca brevifoliaandY. jaegeriana), keystone perennials of the Mojave Desert, from 15 years of crowdsourced observations. We annotated phenophase in 10,212 geo‐referenced images of Joshua trees on the iNaturalist crowdsourcing platform, and used them to train machine learning models predicting flowering from annual weather records. Hindcasting to 1900 with a trained model successfully recovers flowering events in independent historical records and reveals a slightly rising frequency of conditions supporting flowering since the early 20th Century. This reflects increased variation in annual precipitation, which drives masting events in wet years—but also increasing temperatures and drought stress, which may have net negative impacts on recruitment. Our findings reaffirm the value of crowdsourcing for understanding climate change impacts on biodiversity.more » « less
-
Abstract Interactions between species are widely understood to have promoted the diversification of life on Earth, but how interactions spur the formation of new species remains unclear. Interacting species often become locally adapted to each other, but they may also be subject to shared dispersal limitations and environmental conditions. Moreover, theory predicts that different kinds of interactions have different effects on diversification. To better understand how species interactions promote diversification, we compiled population genetic studies of host plants and intimately associated herbivores, parasites, and mutualists. We used Bayesian multiple regressions and the BEDASSLE modeling framework to test whether host and associate population structures were correlated over and above the potentially confounding effects of geography and shared environmental variation. We found that associates' population structure often paralleled their hosts' population structure, and that this effect is robust to accounting for geographic distance and climate. Associate genetic structure was significantly explained by plant genetic structure somewhat more often in antagonistic interactions than in mutualistic ones. This aligns with a key prediction of coevolutionary theory that antagonistic interactions promote diversity through local adaptation of antagonists to hosts, while mutualistic interactions more often promote diversity via the effect of hosts' geographic distribution on mutualists' dispersal.more » « less
-
Moccia, Marcello (Ed.)Nondisclosure of lesbian, gay, bisexual, transgender, asexual, or otherwise queer (LGBTQA) identities in the workplace is both common and stressful to those who do not disclose. However, we lack direct evidence that nondisclosure of LGBTQA identity affects worker productivity. In two surveys of LGBTQA-identified scientists, we found that those who did not disclose LGBTQA identities in professional settings authored fewer peer-reviewed publications—a concrete productivity cost. In the second survey, which included straight and cisgender participants as a comparison group, we found that LGBTQA participants who disclosed their sexual orientation had publication counts more like non-LGBTQA participants than those who did not disclose, and that all three groups had similar time since first publication given their academic career stage. These results are most consistent with a productivity cost to nondisclosure of LGBTQA identity in professional settings, and suggest a concrete need to improve scientific workplace climates for sexual and gender minorities.more » « less
-
IntroductionForecasting range shifts in response to climate change requires accurate species distribution models (SDMs), particularly at the margins of species' ranges. However, most studies producing SDMs rely on sparse species occurrence datasets from herbarium records and public databases, along with random pseudoabsences. While environmental covariates used to fit SDMS are increasingly precise due to satellite data, the availability of species occurrence records is still a large source of bias in model predictions. We developed distribution models for hybridizing sister species of western and eastern Joshua trees (Yucca brevifoliaandY. jaegeriana, respectively), iconic Mojave Desert species that are threatened by climate change and habitat loss. MethodsWe conducted an intensive visual grid search of online satellite imagery for 672,043 0.25 km2grid cells to identify the two species' presences and absences on the landscape with exceptional resolution, and field validated 29,050 cells in 15,001 km of driving. We used the resulting presence/absence data to train SDMs for each Joshua tree species, revealing the contemporary environmental gradients (during the past 40 years) with greatest influence on the current distribution of adult trees. ResultsWhile the environments occupied byY. brevifoliaandY. jaegerianawere similar in total aridity, they differed with respect to seasonal precipitation and temperature ranges, suggesting the two species may have differing responses to climate change. Moreover, the species showed differing potential to occupy each other's geographic ranges: modeled potential habitat forY. jaegerianaextends throughout the range ofY. brevifolia, while potential habitat forY. brevifoliais not well represented within the range ofY. jaegeriana. DiscussionBy reproducing the current range of the Joshua trees with high fidelity, our dataset can serve as a baseline for future research, monitoring, and management of this species, including an increased understanding of dynamics at the trailing and leading margins of the species' ranges and potential for climate refugia.more » « less
-
Summary Joshua trees are long‐lived perennial monocots native to the Mojave Desert in North America. Composed of two species,Yucca brevifoliaandY. jaegeriana(Asparagaceae), Joshua trees are imperiled by climate change, with decreases in suitable habitat predicted under future climate change scenarios. Relatively little is understood about the ecophysiology of Joshua trees across their range, including the extent to which populations are locally adapted or phenotypically plastic to environmental stress.Plants in our common gardens showed evidence of Crassulacean acid metabolism photosynthesis (CAM) in a pilot experiment, despite no prior report of this photosynthetic pathway in these species. We further studied the variation and strength of CAM within a single common garden, measuring seedlings representing populations across the range of the two species.A combination of physiology and transcriptomic data showed low levels of CAM that varied across populations but were unrelated to home environmental conditions. Gene expression confirmed CAM activity and further suggested differences in carbon and nitrogen metabolism betweenY. brevifoliaandY. jaegeriana.Together the results suggest greater physiological diversity between these species than initially expected, particularly at the seedling stage, with implications for future survival of Joshua trees under a warming climate.more » « less
An official website of the United States government
